Hydrogen Transfer from HCl to the Nitrosyl Ligand. Examples of Co-ordinated HNO, NHOH-, and NH₂OH

By K. R. GRUNDY, C. A. REED, and W. R. ROPER*

(Department of Chemistry, University of Auckland, Auckland, New Zealand)

PROTONATION by strong acids to form metal hydrides is a characteristic reaction of many low-valent complexes.¹ When an acetylene is one of the ligands in the complex, *e.g.*, in $Pt(RC \equiv CR)(PPh_3)_2$ it has been reported that reaction with HCl gives $PtCl_2(PPh_3)_2$ and hydrogen transfers to $RC \equiv CR$ giving RCH = CHR.² We now describe the reaction of HCl with low-valent complexes of osmium and iridium containing the nitrosyl ligand, in which hydrogen transfer to NO occurs and the successive reduction products,

HNO, NHOH-, and NH_2OH are found co-ordinated to the metal.

Ir(NO)(PPh₃)₃ is protonated by non-complexing acids, e.g., HPF₆, forming [IrH(NO)(PPh₃)₃]PF₆.³ However, when an excess of HCl (either gaseous or concentrated aqueous solution) is added to a dichloromethane solution of Ir(NO)(PPh₃)₃ a yellow crystalline material of composition Ir(NO)(PPh₃)₃,3HCl is formed. We formulate this as an iridium(III) hydroxylamine complex, IrCl₃(NH₂-OH)(PPh₃)₂, since the i.r. spectrum shows no absorption attributable to ν_{NO} or ν_{Ir-H} but instead has bands appropriate for ν_{NH} , ν_{OH} , and ν_{Ir-Cl} (see Table), and also because reaction with CO gives the known compound, IrCl₃(CO)-(PPh₃)₂ by displacement of NH₂OH. The original nitrosyl complex is re-formed by the action of KOH.

I.r. data^a for new complexes^b

		v_{NO} cm ⁻¹	$v_{\rm CO}~{\rm cm^{-1}}$	VM-CI Cm ⁻¹	VNH,OH CM ⁻¹
Ir(NO)(PPh ₃) ₃ IrCl ₂ (NH ₂ OH)(PPh ₂) ₂	••	1600vs		330sh. 320s. br	3300w, 3240w, 3160w
$Os(NO)_2(PPh_s)_2$	••	1665vs, 1615s		210 201	2210
$OsCl_2(NHOH)(NO)(PPh_3)_2$	•••	1560s	1905s	296	3310w, 3200w, 2000m, Dr
OsCl ₂ (HNO)(CO)(PPh ₈) ₂	••• 1	1410s	1975s	293, 280	

^a As Nujol mulls. ^b Satisfactory elemental analyses have been obtained.

It is possible that intermediates in this reaction are first an iridium(I) complex, IrCl(HNO)(PPh₃)₃, (from [IrH(NO)- $(PPh_3)_3$ ⁺ by hydride migration on to NO induced by

co-ordination of chloride ion) which reacts further with HCl to give IrCl₂(NHOH)(PPh₃)₃ and finally IrCl₃(NH₂OH)- $(PPh_3)_2$. We have encountered stable examples of these intermediates in the reaction of osmium nitrosyls with HCl. $Os(NO)_2(PPh_3)_2^4$ forms an adduct with two moles of HCl formulated as OsCl₂(NHOH)(NO)(PPh₃)₂ since the product has a single strong ν_{NO} at 1860 cm^-1, a position characteristic of other $OsX_3(NO)(PPh_3)_2$ compounds (X = anionic ligand);⁵ and i.r. bands due to v_{NH} , v_{OH} , and v_{OB-C1} (see Table). The reaction is reversed upon attempted chromatography on alumina, and Os(NO)₂(PPh₃)₂ is recovered quantitatively.

To form a stable adduct with one mole of HCl, a five-coordinate nitrosyl complex would be required, and accordingly we investigated the reaction of OsCl(CO)(NO)(PPh₃)₂⁵ with HCl. A crystalline 1:1 adduct is formed, the physical

- ¹M. L. H. Green and D. J. Jones, Adv. Inorg. Chem. Radiochem., 1965, 7, 115.
- ² P. B. Tripathy and D. M. Roundhill, J. Amer. Chem. Soc., 1970, 92, 3825.
- ⁵ C. A. Reed and W. R. Roper, Chem. Comm., 1969, 155.
 ⁶ K. R. Grundy, K. R. Laing, and W. R. Roper, preceding communication.
 ⁵ K. R. Laing and W. R. Roper, Chem. Comm., 1968, 1568.
 ⁶ R. B. King, Inorg. Chem., 1967, 6, 25.
 ⁷ F. O. Einshen and A. Magabäl. Ansar: Chem. Internet. Edu., 1964, 2, 580.

- ⁷ E. O. Fischer and A. Maasböl, Angew. Chem. Internat. Edn., 1964, 3, 580.
 ⁸ J. P. Collman and W. R. Roper, J. Amer. Chem. Soc., 1966, 88, 3504.

properties of which (see Table) are consistent with an octahedral osmium(11) complex containing co-ordinated HNO, OsCl₂(HNO)(CO)(PPh₃)₂, the first such example to be

reported. The stabilisation through co-ordination of otherwise reactive species e.g., HNC,⁶ carbenes⁷ etc., is well recognised. The HNO ligand is displaced by CO giving $OsCl_2(CO)_2(PPh_3)_2^8$ and in solution HCl is easily lost to re-form $OsCl(CO)(NO)(PPh_3)_2$.

We thank the New Zealand Universities' Grants Committee for a Postgraduate Scholarship (to C.A.R.) and for research grants.

(Received, September 14th, 1970; Com. 1551.)